Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37949473

RESUMEN

Programmed death ligand 1 (PD-L1) serves as a pivotal immune checkpoint in both the innate and adaptive immune systems. PD-L1 is expressed in macrophages in response to IFNγ. We examined whether PD-L1 might regulate macrophage development. We established PD-L1 KO (CD274 -/- ) human pluripotent stem cells and differentiated them into macrophages and observed a 60% reduction in CD11B+CD45+ macrophages in CD274 -/- ; this was orthogonally verified, with the PD-L1 inhibitor BMS-1166 reducing macrophages to the same fold. Single-cell RNA sequencing further confirmed the down-regulation of the macrophage-defining transcription factors SPI1 and MAFB Furthermore, CD274 -/- macrophages reduced the level of inflammatory signals such as NF-κB and TNF, and chemokine secretion of the CXCL and CCL families. Anti-inflammatory TGF-ß was up-regulated. Finally, we identified that CD274 -/- macrophages significantly down-regulated interferon-stimulated genes despite the presence of IFNγ in the differentiation media. These data suggest that PD-L1 regulates inflammatory programs of macrophages from human pluripotent stem cells.


Asunto(s)
Antígeno B7-H1 , Macrófagos , Humanos , Antígeno B7-H1/genética , Interferón gamma/inmunología , FN-kappa B
3.
Front Cell Dev Biol ; 10: 803947, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646915

RESUMEN

The tumor microenvironment encompasses various innate immune cells which regulate tumor progression. Exploiting innate immune cells is a new frontier of cancer immunotherapy. However, the classical surface markers for cell-type classification cannot always well-conclude the phenotype, which will further hinge our understanding. The innate immune cells include dendritic cells, monocytes/macrophages, natural killer cells, and innate lymphoid cells. They play important roles in tumor growth and survival, in some cases promoting cancer, in other cases negating cancer. The precise characterization of innate immune cells at the single-cell level will boost the potential of cancer immunotherapy. With the development of single-cell RNA sequencing technology, the transcriptome of each cell in the tumor microenvironment can be dissected at a single-cell level, which paves a way for a better understanding of the cell type and its functions. Here, we summarize the subtypes and functions of innate immune cells in the tumor microenvironment based on recent literature on single-cell technology. We provide updates on recent achievements and prospects for how to exploit novel functions of tumor-associated innate immune cells and target them for cancer immunotherapy.

4.
EMBO Rep ; 22(9): e51781, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34323349

RESUMEN

During neocortical development, neural stem cells (NSCs) divide symmetrically to self-renew at the early stage and then divide asymmetrically to generate post-mitotic neurons. The molecular mechanisms regulating the balance between NSC self-renewal and neurogenesis are not fully understood. Using mouse in utero electroporation (IUE) technique and in vitro human NSC differentiation models including cerebral organoids (hCOs), we show here that regulator of cell cycle (RGCC) modulates NSC self-renewal and neuronal differentiation by affecting cell cycle regulation and spindle orientation. RGCC deficiency hampers normal cell cycle process and dysregulates the mitotic spindle, thus driving more cells to divide asymmetrically. These modulations diminish the NSC population and cause NSC pre-differentiation that eventually leads to brain developmental malformation in hCOs. We further show that RGCC might regulate NSC spindle orientation by affecting the organization of centrosome and microtubules. Our results demonstrate that RGCC is essential to maintain the NSC pool during cortical development and suggest that RGCC defects could have etiological roles in human brain malformations.


Asunto(s)
Neocórtex , Células-Madre Neurales , Animales , Diferenciación Celular , Ratones , Neurogénesis , Neuronas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...